157 research outputs found

    Multi-neuronal refractory period adapts centrally generated behaviour to reward

    Get PDF
    Oscillating neuronal circuits, known as central pattern generators (CPGs), are responsible for generating rhythmic behaviours such as walking, breathing and chewing. The CPG model alone however does not account for the ability of animals to adapt their future behaviour to changes in the sensory environment that signal reward. Here, using multi-electrode array (MEA) recording in an established experimental model of centrally generated rhythmic behaviour we show that the feeding CPG of Lymnaea stagnalis is itself associated with another, and hitherto unidentified, oscillating neuronal population. This extra-CPG oscillator is characterised by high population-wide activity alternating with population-wide quiescence. During the quiescent periods the CPG is refractory to activation by food-associated stimuli. Furthermore, the duration of the refractory period predicts the timing of the next activation of the CPG, which may be minutes into the future. Rewarding food stimuli and dopamine accelerate the frequency of the extra-CPG oscillator and reduce the duration of its quiescent periods. These findings indicate that dopamine adapts future feeding behaviour to the availability of food by significantly reducing the refractory period of the brain's feeding circuitry

    Impact of Energetic Ion Driven Global Modes on Toroidal Plasma Confinements

    Get PDF
    Excitation of energetic-ion-driven Alfv6n eigenmodes (AEs) and their impact on energetic ion confinement are widely and intensively studied in helical devices such as CHS and LHD as well as major tokamaks. The excitation of AEs sensitively depends on the parameter space defined by the averaged beam beta and the velocity ratio V6nlV6 (V611 : injected beam ion velocity, Va: Alfv6n velocity). In LHD, these two relevant parameters are widely scanned without suffering from current disruptions. So far, toroidicity induced AE (TAE), global AE (GAE) and energetic particle mode (EPM) or resonant TAE (R-TAE) were identified during tangential neutral beam injection (NBI) in CHS and LHD. Moreover, a new coherent mode with the frequency by about 8 times higher than the TAE frequency was observed in NBI heated plasmas of LHD at low magnetic field (<0.6T). This mode may be induced by helical field components of the confinement field. Nonlinear phenomena of bursting amplitude modulation and fast frequency chirping are clearly seen for TAEs and EPMs in CHS and LHD. EPMs in CHS and bursting TAEs in LHD enhance radial transport of energetic ions in certain plasma conditions

    Monoamines, Insulin and the Roles They Play in Associative Learning in Pond Snails

    Get PDF
    Molluscan gastropods have long been used for studying the cellular and molecular mechanisms underlying learning and memory. One such gastropod, the pond snail Lymnaea stagnalis, exhibits long-term memory (LTM) following both classical and operant conditioning. Using Lymnaea, we have successfully elucidated cellular mechanisms of learning and memory utilizing an aversive classical conditioning procedure, conditioned taste aversion (CTA). Here, we present the behavioral changes following CTA training and show that the memory score depends on the duration of food deprivation. Then, we describe the relationship between the memory scores and the monoamine contents of the central nervous system (CNS). A comparison of learning capability in two different strains of Lymnaea, as well as the filial 1 (F1) cross from the two strains, presents how the memory scores are correlated in these populations with monoamine contents. Overall, when the memory scores are better, the monoamine contents of the CNS are lower. We also found that as the insulin content of the CNS decreases so does the monoamine contents which are correlated with higher memory scores. The present review deepens the relationship between monoamine and insulin contents with the memory score

    ウメ ハフチエソビョウ ビョウゲン ウイルス ノ ジュウエキ セッシュ ニ ヨル ウメ ヒンシュ ナンコウ ニ オケル ビョウチョウ サイゲン ノ カクニン

    Get PDF
    わが国有数のウメの産地,和歌山県紀南地方のウメ品種南高に発生している"ウメ葉縁えそ病"(茶がす症)がCucumber mosaic virus(CMV-Um)およびPrunus necrotic ringspot virus類似ウイルス(PNRLV)の重複感染によることを証明する目的で,り病樹から分離された,これら2ウイルスをウメ品種南高に混合接種して病徴の推移を調べた。その結果,萌芽の遅延,不完全花の高率発生,葉脈間の黄化による濃淡斑,全葉の黄化,葉縁部のえそ,早期の落葉など本病の病徴がおおよそ再現された。PNRLV単独接種では病徴は軽く,CMV-Um単独接種では健全対照樹と大差はなかった。以上から本病はこの両ウイルスの重複感染によるものと結論された。なお,花器の異常として雌蕊の発育不全が不稔の主因と思われることを示唆する結果が得られた。Mume leaf margin necrosis (mume leaf edge necrosis) disease, which has occurred in the southern district of Wakayama Prefecture, a major area for mume fruits production in Japan, was tested for symptoms expression by sap inoculation of causal viruses to original mume plantlets cv.Nankou grafted onto Nankou seedlings. Tobacco leaf tissues infected with Cucumber mosaic virus (CMV-Um) and Prunus necrotic ringspot-like virus (PNRLV) isolated from diseased mume plants in Wakayama were macerated, respectively, in phosphate buffer added with nicotine and sodium DIECA. Inoculations were made by slashing the surface of green shoots with a surgical knife dipped into inoculum. Eaqualy mixed saps of CMV-Um and PNRLV and both of single virus were inoculated to each 5 potted plantlets, respectively. Inoculated plants with mixed sap showed the symptoms of delayed sprouting, leaf interveinal chrolosis, leaf rolling, leaf margin necrosis, earlier yellowing of leaves and defoliation, and higher percentage occurrence of deformed flowers. These symptoms are similar to the naturally infected plants in the fields. The symptoms in the PNRLV plot indicated slighter symptoms than the mixed one, the CMV-Um plot showed almost symptomless and the buffer-inoculated control plot remained healthy. These results were evidence that the disease is caused by multiple infection with two viruses described above. Infertility of pistil in deformed flower suggests the major cause of barrenness in the diseased plant

    Fear Conditioning to Subliminal Fear Relevant and Non Fear Relevant Stimuli

    Get PDF
    A growing body of evidence suggests that conscious visual awareness is not a prerequisite for human fear learning. For instance, humans can learn to be fearful of subliminal fear relevant images – images depicting stimuli thought to have been fear relevant in our evolutionary context, such as snakes, spiders, and angry human faces. Such stimuli could have a privileged status in relation to manipulations used to suppress usually salient images from awareness, possibly due to the existence of a designated sub-cortical ‘fear module’. Here we assess this proposition, and find it wanting. We use binocular masking to suppress awareness of images of snakes and wallabies (particularly cute, non-threatening marsupials). We find that subliminal presentations of both classes of image can induce differential fear conditioning. These data show that learning, as indexed by fear conditioning, is neither contingent on conscious visual awareness nor on subliminal conditional stimuli being fear relevant

    A Novel Behavioral Assay for Measuring Cold Sensation in Mice

    Get PDF
    Behavioral models of cold responses are important tools for exploring the molecular mechanisms of cold sensation. To complement the currently cold behavioral assays and allow further studies of these mechanisms, we have developed a new technique to measure the cold response threshold, the cold plantar assay. In this assay, animals are acclimated on a glass plate and a cold stimulus is applied to the hindpaw through the glass using a pellet of compressed dry ice. The latency to withdrawal from the cooled glass is used as a measure of the cold response threshold of the rodents, and the dry ice pellet provides a ramping cold stimulus on the glass that allows the correlation of withdrawal latency values to rough estimates of the cold response threshold temperature. The assay is highly sensitive to manipulations including morphine-induced analgesia, Complete Freund's Adjuvant-induced inflammatory allodynia, and Spinal Nerve Ligation-induced neuropathic allodynia

    Change in hippocampal theta oscillation associated with multiple lever presses in a bimanual two-lever choice task for robot control in rats.

    Get PDF
    Hippocampal theta oscillations have been implicated in working memory and attentional process, which might be useful for the brain-machine interface (BMI). To further elucidate the properties of the hippocampal theta oscillations that can be used in BMI, we investigated hippocampal theta oscillations during a two-lever choice task. During the task body-restrained rats were trained with a food reward to move an e-puck robot towards them by pressing the correct lever, ipsilateral to the robot several times, using the ipsilateral forelimb. The robot carried food and moved along a semicircle track set in front of the rat. We demonstrated that the power of hippocampal theta oscillations gradually increased during a 6-s preparatory period before the start of multiple lever pressing, irrespective of whether the correct lever choice or forelimb side were used. In addition, there was a significant difference in the theta power after the first choice, between correct and incorrect trials. During the correct trials the theta power was highest during the first lever-releasing period, whereas in the incorrect trials it occurred during the second correct lever-pressing period. We also analyzed the hippocampal theta oscillations at the termination of multiple lever pressing during the correct trials. Irrespective of whether the correct forelimb side was used, the power of hippocampal theta oscillations gradually decreased with the termination of multiple lever pressing. The frequency of theta oscillation also demonstrated an increase and decrease, before and after multiple lever pressing, respectively. There was a transient increase in frequency after the first lever press during the incorrect trials, while no such increase was observed during the correct trials. These results suggested that hippocampal theta oscillations reflect some aspects of preparatory and cognitive neural activities during the robot controlling task, which could be used for BMI

    Role of Muscarinic Acetylcholine Receptors in Serial Feature-Positive Discrimination Task during Eyeblink Conditioning in Mice.

    Get PDF
    We investigated the role of muscarinic acetylcholine receptors (mAChRs) in eyeblink serial feature-positive discrimination learning in mice using the mAChR antagonist. A 2-s light cue was delivered 5 or 6 s before the presentation of a 350-ms tone paired with a 100-ms periorbital electrical shock (cued trial) but not before the tone-alone presentation (non-cued trial). Mice received 30 cued and 30 non-cued trials each day in a random order. We found that saline-injected control mice were successfully discriminating between cued and non-cued trials within a few days of conditioning. The mice responded more frequently to the tone in cued trials than in non-cued trials. Analysis of conditioned response (CR) dynamics revealed that the CR onset latency was shorter in cued trials than in non-cued trials, despite the CR peak amplitude not differing significantly between the two conditions. In contrast, scopolamine-injected mice developed an equal number of CRs with similar temporal patterns irrespective of the presence of the cue during the 7 days of conditioning, indicating in a failure to acquire conditional discrimination. In addition, the scopolamine administration to the control mice after they had successfully acquired discrimination did not impair the conditional discrimination and expression of pre-acquired CR. These results suggest that mAChRs may play a pivotal role in memory formation in the conditional brain state associated with the feature cue; however they are unlikely to be involved in the development of discrimination after conditional memory had formed in the serial feature-positive discrimination task during eyeblink conditioning

    Real-time estimation of horizontal gaze angle by saccade integration using in-ear electrooculography

    Get PDF
    The manuscript proposes and evaluates a real-time algorithm for estimating eye gaze angle based solely on single-channel electrooculography (EOG), which can be obtained directly from the ear canal using conductive ear moulds. In contrast to conventional high-pass filtering, we used an algorithm that calculates absolute eye gaze angle via statistical analysis of detected saccades. The estimated eye positions of the new algorithm were still noisy. However, the performance in terms of Pearson product-moment correlation coefficients was significantly better than the conventional approach in some instances. The results suggest that in-ear EOG signals captured with conductive ear moulds could serve as a basis for lightweight and portable horizontal eye gaze angle estimation suitable for a broad range of applications. For instance, for hearing aids to steer the directivity of microphones in the direction of the user’s eye gaze

    Gestational Valproate Alters BOLD Activation in Response to Complex Social and Primary Sensory Stimuli

    Get PDF
    Valproic acid (VPA) has been used clinically as an anticonvulsant medication during pregnancy; however, it poses a neurodevelopmental risk due to its high teratogenicity. We hypothesized that midgestational (GD) exposure to VPA will lead to lasting deficits in social behavior and the processing of social stimuli. To test this, animals were given a single IP injection of 600 mg/kg of VPA on GD 12.5. Starting on postnatal day 2 (PND2), animals were examined for physical and behavior abnormalities. Functional MRI studies were carried out after PND60. VPA and control animals were given vehicle or a central infusion of a V1a antagonist 90 minutes before imaging. During imaging sessions, rats were presented with a juvenile test male followed by a primary visual stimulus (2 Hz pulsed light) to examine the effects of prenatal VPA on neural processing. VPA rats showed greater increases in BOLD signal response to the social stimulus compared to controls in the temporal cortex, thalamus, midbrain and the hypothalamus. Blocking the V1a receptor reduced the BOLD response in VPA animals only. Neural responses to the visual stimulus, however, were lower in VPA animals. Blockade with the V1a antagonist did not revert this latter effect. Our data suggest that prenatal VPA affects the processing of social stimuli and perhaps social memory, partly through a mechanism that may involve vasopressin V1a neurotransmission
    corecore